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Abstract

We analyze the long time behaviour of fully discrete solutions to a one-dimensional

nonlinear viscoelastic problem. It is shown that these approximations which are
found by a continuous time Galerkin method converge to a steady state. The possi-

ble numerical steady states are characterized and in particular their high degree of
dependence on initial data and mesh design is explained. Computational results are
included which show the above dependence and indicate that the numerical solutions

will typically not converge to unstable states. -
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1. Introduction

Recently, attempts have beeni made at rinirnizing nonconvex stored energy function-

als by means of studying the steady sta-es of auxiliary time dependent problems. In
parts of the literature, the class of me; nods is termed Dynamic Relaxation. This

techiiique involves solving a time depei. 4ent P.I).E. and marching to a steady state

which hopefully is a near minimizer. We refer to 11, 121, 131, 141, 151, 161 and the

references there. In this paper we will sti dy the long term behaviour of certain fully

discrete solutions to

(t = (a(U.) ±+ <) in (0, t) x (0,oo)
uo(0,) 0 -0, t > 0

(a(U,)+U')(1,t) or u I,t) 0 >0 (1>)

U(X,0) = uo(.X). U,(),o = Vo(X) inl (0, 1)

which conMan(ls some interest in its ovwn right. (1.1) models the one-dimennsional

motion under zero body forces of a nonlin:ear viscoelastic material of rate type, some-

times called the Kelvin-Voigt model. U(z.t) denotes the displacement at time t of a

particle having position x in some reference configuration. See also [71. It is hoped

then that for t sufficiently large, U will ?.pproach a local minimum and satisfy the

Euler-Lagrange equations associated wit>: the minimization problem.

The asymptotic behaviour of (1.1) was -he focus of two studies, 181 and [1Q, in which
it was shown that weak solutions exist g.obally provided Uo C 14' '', Vo (: L"(0, 1)

and the sign of the stresses for large s is -estricted as follows: a : 1? -, R,

lM > 0, 1s I> Af C(s) > 0. (1.2)

Furthermore the solutions converge strongly to (local) equilibrium, as t -- oo:

U ---- 0. in H'1(0, 1), o(U.,) + U., -- 0 in 12(0, 1)

(1.3)

U,(x,t) - o(z) bounded]', a.e., a(S) = 0 a.e.,

and when a dynamic stability criterion

do

( > O > 0 or (.) =0 (1.4)

is satisfied, the asymptotic states are metastable in the sense that if the strains are

perturbed by small amounts except on a set of measure c, then the solution will
approach an nquilibrium with stiain equal 'o the unperturbed strain everywhere but

possibly the saille exccptional set. U(., t) (,inverges in the sense of generalized curves,
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cf. 1lO] and 111], i.e. there exists a parametrized family of probability measures

{ ,,} (n. on R. such that q(uT(.,t)) - < v,,,g > i.i L°(O, I) for each continuous

g. Here, < v,,g(s) > denotes the value of a probability measure v for a continuous
function g on the state domain.

It has been observed, e.g. by Silling 13], that dynamic relaxation as a computa-
tional method for a similar two-dimensional problem may yield numerical solutions

exhibiting different phases that can be identified with appropriate ranges of values of
the deformation gradient. In mixing regions between two elliptic phases, the gradienRt
become discontinuous and tihe soution was observed to be highly mesh dependent.

We are here interested in studying (1.1) when a is not a monotone increasing
function so that the stored-energy functional

f ((v')dx (1.5)

0

is not convex. In general there are thus infinitely many solutions to the corresponding
equilibrium problem:

(U'(X))} =0 (1.6)

subject to mixed, Dirichlet and traction boundary conditions

v(0) = fo and a(v')(1)= P (1.7a)

or Dirichlet boundary conditions

v(0) = fo and v(1) (1.7)

i/ is a real-valued function in one variable: Vk(v')(x) = fo'a(s)ds and is defined

as follows. Let SL < § < SU, 0 < d < (sU - SL)/2 and A1 , A2 , A3 > 0. We take
f, - ft = P = 0. Let V, be a double well:

,(s) > Osd, = 08(0, = 1,' q -A SL, SU,
V) (s) A I(s - SL)' fu. 1 8 - SL 1' df,

O(s) > I (s - s 5) 2  for Is - sET I< a, (1.8)
V) > Ala 2  for SL+a<S <S-&,

A3 (s - ) > V,(s) > A2(s - ) for S V [SL - &,ST + d1.

10 is well defined on I'. Collins, Kinderlehrer, and Luskin [12] noted that the vari-
ational principle infcll I,(v) where v satisfies (1.7b) may have nonunique limits for
minimizing sequences as well as nonunique associated Young measure (the probabil-
ity measures mentioned above), Il]. The simplest limit deformation, however, is the
linear function f satisfying (1.7b). In [12] they consider instead minimizing

If(v) (v(x) - f(x)) 2dx (1.9)
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Figure 1: Energy and Stress as fuinctions of Strain

subject to v(0) = v(I) = 0 with f the unique limit, deformation and a unique associ-

ated Young measure
1T= (1(1-0

where -y = (SU - )1(51 - 3L) and 6, denotes the Dirac delta distribution with sup-
port at z. Note that infH1Dv:(l.7) 10(v) = infV Ey JP(v). The stored energy and the

associated stress-strain law are be depicted in fig. I () = )
Note that, although infrEiI JO(v) = 0, there is no minimizer in H'. In [121 it was

shown that minimizing Jp over a sequence of (uniform mesh) finite element spaces,
leads to a minimizing sequence tth, such that u'? converges in a weak sense to the

unique Young measure in (1.10) as h - 0. u'h(x) oscillates (in the limit) between the
energy wells at s = SL and at s = SL occupying these states in proportions -1 and 1 -- Y
of the interval, respectively. Double wells of unequal heights can be incorporated as
in 1121 by shifting V) by some linear function.

Example 1.1 Let us characterize, for future use, the solution to the discrete Galerkin,
Euler-Lagrange equations in the simplest case. Let m G N, for h =' x0  0 and
xj = ih, Ij - (xi- 1 ,xi) for i 1,... ,rn. Define the finite element space for the
boundary conditions (1.7a) (fo = 0, I = (0, 1))

S={v C(0, 1): v(0) 0 and v ,EP, (I), i ,.m} (1.11)

Then the weak form of the Euler-Lagrange equation (u(u ))= 0 becomes

Find Uh E Sh' such that for all v E S' j u(uh, )v d= 0. (1.12)

Since u i(0) = 0 and Uh,x, v, are piecewise constants, we ca.n substitute (

v(x,. )) for fl. Now successively testing against rn basis functions f' C S' defined by
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'i(x,) -=1, i'(,) - 0 for I ' , z 1,. ,m, one easily see that a(u ) remains the

same constant throughout 1. So UI e- CI where
C, - {- ( ,(I) 0} -- {, E {SL,0, s } }, (1.13)

such that C," consists of 3", isolated solutions. Any two nonidentical solutions in Ch
differ by at ieas: a positive constant depending on 1h, 8 L, and s.

Example 1.2 In the case of Dirichlet boundary conditions at both endpoints (1.7b),
the discrete equilibria become less tangible. \Vitit m, I, zi and Ii as in the previous
exa rnip defr.l

h 1'-7: C (0, 1): v(0) = v(l) 0, 1, 1,C P,(I i ), i 1,...,rn} (1.14)

as above we see that a(z,,Th) is constant P, say. Let ac-(P) = {/ 1412,,13} listed in
ascending order. Let fl denote the numbers of intervals in which th, = , = 1,2,3.
Since uh satisfies (1.71)) we get the following constraint

3

771ii i = O, m>0 for i= 1,2,3.
i=1

The set of possible values for P depends very much on the shape of the stress strain
law. It is clear that a - (P) = {pI} a singleton is not viable, similarly if o-' (P) =
{P 1 , A2}, we need /tI12 C Q and m sufficiently large. To explain take a very simple
minded trilinear stress-strain law, such that a has roots 5 L, 0, and s,,; a' 1= A. Thus

A(S- SL) , for s < SL/2

(S) -A.. for .SL/2 < s < s[2

A(s -- st), for s > st1/2

In one of the two root cases, P = -ASL/ 2 and tt = SL/2, A2 = - SL/2 so that

SL/su must be rational (-2, irreducibly say) and tn > p + q. In the three root

cases -P/A e I(-sr, -SL) and It = SL + P/A, A2 =-PA, and 13 = S + P/A.
the constraint of zero mean slope above can be met always by letting m2 = 0 and
choosing P/A = -(mIsL + i.5s,)/m. This allows for at least one degree of freedom
in choice for P and thus possible slopes Aj, as long as m > m/4, i = 1,3. It is
particularly interesting that we can allow rn2 > 0 putting strict lower bounds on i7 1 ,

rn3 . The solutions are still isolated, the P/A values admissible being separated by
dh = c(SL, s,)/m amounting to a nearest neighbour distance of the same order in the
set of discrete Galerkin equilibria. Of course, more nontrivial discrete equilibria are
realizable using nonuniform meshes selected appropriately.

Increasing the polynomial degree in the finite element space will likely yield an
even wider spectrum of discrete equilibria.
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Other forms of damping/dissipation could also be considered for dynamic relax-
atiow thernal (heat diffusion), frictional (inicluding U, in (1.1)), and viscoelastic
of history type (u(U.) depending on the deformation for all previous times through

convolution with a kernel (see Bielak an(l MacCamy (13]). Dissipation mechanisms
which will substantially influence behaviour include capillarity (adding a U,,, term
to (I.I), see Sleinmrod [151) and non-local (in space) constitutive relations ,see Be-
lytschko and l3azant 151. These are typically i not used in dynamic relaxation with the
exception of Lelytschko.

Finally note, that if the energy in contrast is convex, a unique solution is given by

the Euler-Langrange equations and there exist numerical procedures for minimization,
see e.g. 16], and the time dependent '.1). E. was handled, see (17], 118], 119]. If one
uses le Maxwell relation to relax the problems, nonuniiqueness of an even larger class
than before arises. Numerical methods exist, cf. (20] and the references there.

Our goal will be to establish the set of conditions under which a class of numerical

r1fleHods Will yi(!J a long time behaviour with asymptotic states that are (local)
min1ima of (1.9).

The plan of the paper is as follows. We analyzed what possible numerical steady
st, tes exist for (1.1) already. In the next section, we introduce the continuous time
Galerkin scheme. In section 3, we show that the numerical solution must converge

to one of the steady states (for the specific fully discrete method in section 2). We
report on some of our numerical experiments in section 4 which is followed by some
concluding remarks.
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2. Dynamic Relaxation by Continuous Time Galerkin Schemes
with Viscoelasticity

\Ve introduce th, continuous time Galcrkin (CTG) schemes (see [221 and the refer-

eces there). Let 0 x < ... < xi-I < xi < < r 1, , (x- 1 , x,),

11, - It I, i=- 1,.., m and

s,=xe C(0,1): X(0) =0, x 1,e PI(I), i 1,.,m}.

L~et 0 = to < t I < t2 < ..., J,, (t,-_1, t,), k,, = J, 1, it = 0, 1,2,.... and

{r C(0, 0oo) • T j,,C F(J,,}.

Then Shk k {A" A 7-) y T, S ',/L, r ,I (E N} and we discretize

as follows (CTG):

Find u E Slk and V e Sh'k such that

((ut- v, x)), = 0 Vx C 51P 0 (J )

(2.1)

((vt, A)),, + ((u t + (u), A,)), = VA E S' 0 Po(J,)

where u,(., 0) = uo - U0o, and v(., 0) = vo V V.,

The inner products are defined by

(v, w) f, v(x) w(x) dx

(v, w). fj,, v (t) w(t) dt (2.2)

((v, w)),, = Jfj, vo (i, t) w(x, t) dtdx.

Note that (2.1) can be given the following equivalent finite difference in time formu-

lation
JI(U' 2 I-U' W + ""')dx=O, VXCS'

, 4(2.3)
fol(V-+,-V A + ( -k+ _ ,

_ I  -- )A) x V

where wj = w(tj) for 1 = n, n 4- 1; w u, u,, v G Slk. One of the fundamental

properties is the following energy estimate.
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Proposition 2.1 Let u, v e Sh'k be the solutions of (2.1). Then for any n E N, the

follwning energy identity holds

o 2,'(2", 4- ¢(u,)) dx Kt,, " ,,f u,: dtdX (2..I)

Proof: Choose \' vt and A -- it in (2.1) to get,

((,t, Vt)),, = 2
and

(01t, ,,<)),, ...( <tq : ,:, o ur),, f f,,, d 2f:=  .,.d,.,

from which (2.4) follows.

Corollary 2.2 Under the same hypothesis as itn Prop. 2.1,

0 G

where
E(t,) I (V - ?,)) (y, I") (X,

(2.6)
Eo = E(to).

Proof: Sum (2.4) from j 0 to j n - 1.

El

We still have to prove existence and uniqueness of solutions to (2.1)

Lemma 2.3 If (u,v) is a solution to (2.1), then there exists an M > 0, depending

only on Eo, such that for all it e N

() I,11 0o.)<_ M

(ii) IIV(U)i L(o,l) < M (2.7)

* '') !l, " ll. , (O,,) .



Proof: (2.5) yields It"IL'.(0,,) < (2 E., '2) and II (,11)IL'(o, )  < Eo from which (ir)

and (i') follow. U'sitig (0't) and suilv iding I according to which of the last four

sets defiled in (1.8). u" b)elonlgs, the L' norm of u" is I)ounded and] (:ii) follows by

I)oinc ar6's Inequality.

We then ph rase (2.1) as a fixed )oint problem. Consider solving the CT(, pro hleIm
on the t, im eslab Q, - (0,1) ,.,1. Define the m ap j). : (S h,@® J (J , )) 2 -, ( ,, gl,,(,j,,))2

as the solution ( , ' ), given (LI, '.), to

Find T-1 , 11 f I P (J,,) such that

(2.8)

(( ', )), -((, ',A,)),, - ((c(,t), A.)),,, VA e Sh,

where i,'(x,t) u-(x) and I+ '(X,t,,) Vn(X), VX E (0,1).

This defines a linear systelm of equations, To show there is a unique solution on each

iteration we prove the homogeneonFs system (zero right-hand-side and zero data at

t,,) has only the zero solution.

Lenmma 2.4 Let (P be defined as in (2. F). Then ((0) = 0.

Proof With zero right-hand-side in (2.S), let A = u1j and X = - j so thatJ.,0
14-1 1

- (O' 4 '(x,t, I )):dr. ' Y''dxdf 0

and, - 0, i' -- 0, and i3' (t,±,) -0. Nnwchoose=A toget V' ,,

0 and D1'tl = 0 and V-' -=O.

Let
B {x E S' 0 P, (J,) : maxllx, t)<IL2(o,) < R}h EJ,, 11X )1 L -(01

and M, = suPl,M+1 I a(s) 1. Then () selfrnaps B" into B, for R M + I, M being

the constant in (2.7).

Lemma 2.5 let 4) he defined as in (2.8). Then •) --T : B. 8 , proided k,, (AV -

kM 2 ) < I.
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/roof: As ini the previous proof, le A\ t aind X -- I-) to get

,f" .-r -'l ]-

f2 f "l (it J : 7

f C .1, 2

/ I Aa ".N
A-,, f 2 ,,

' ''2 it/t . ,t,, \)

I l . , {k,,(,If 2  - k, 1/2)}'
/2  - A4

ending the proof.

Finally, (b Is ,a contraction in sonMP aippropriate norm. Let L, siPl.<. a'(

,,iici a 2.6 Let (P be defJied , , /.. ,J. "l'h c: 1 , , (0, 1) such that

?-T (2.

l![ it I, , J 1 ,2 .,". ( o,, ,),,( , I Iia -a tl
p~roide~d k,!,I ,, 1: , V(It,,,,,), i), . , , .

'roofi: Let, 6: j - ,,1 al] Then from (2.8)1-- -(2.8)2, we get

((01 ,.xl),-- 0 Vx Sh

((1,,.A)),,- ((, ,A )), ( - - , (A C S

Lettin g y' ( an id A 6f, we gel

22
2 , : , 1- I2 tH 117i

T - ' 2, 1!1 II1 111i
I - 7 12t 1 '22
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Sine IH I k/ 2 II Iwe get

y eIIifg (2.A).

Thiis ustablkihes the exIstence and iniqueness of the solution to (2.] by applyinig

1,1W conltm~toii zappimg jInrwipie to (2.8).
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3. Large Time Behaviour of Numerical Solution

We now analyze the behaviour in the large of solutions to Continuous Time Galerkin

numerical method introduced in Section 2.
If we again denote u" = u(t,,) (and similarly for v"), we next state and prove the

following properties of the sequence t(u", v")}.

Proposition 3.1 Let (unt)) be the sequence uniquely determined by (2.3) and u
the corresponding discrete function. Then IM > 0, such that

(i) IV"lL-(o,) < M, Vn E N

(i,) [('1()11L(o,) M M, Vn E N

(Iii) jju [H,(0,) < M , Vn G N (3.1)

(iv) fo ' i ,,e t dxdt < E0

(v) f., f ' uj [ dxdt - 0 as n -* oo.

Proof: (i) through (iii) merely restate lemma 2.3. Using (2.5) in the limit n - oc

yields (h,) which has (u) as an easy consequence.

l

Corollary 3.2 let (un, v,) satisfy (2.3) and (u,v) be the discrete solution. Then

() Iuthll2(O , I) , j Ultj,2(0,j) -- 0 as t - 0

(3.2)
(ii1) (a (un),A.) - 0, VA ES1 as n-oo

Proof: (i) follows from (3.1.v) and Poincar6's inequality. Since v E S' for each x, Vt

is a piecewise constant (vn + ' - v')/k. From (2.1) and (3.2 i) it follows that Vw G S 1

joj vw dtdx-Oasn- o

or

A'iw dx -* 0 as n --
0
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where A" = {vF + vn- }/2. Note that v" 1 
- v'= -- An). Summing (2.1)2

we ha've

I-[((a(U), A)),, + ((o(u,), A)),, I

+ A(J v, dt) dx

0+ t'(A,,.
= _((uo A))j + 4 f _(A?+' A')A dx.

j=n 0

Fromn (3.2i) and (3.3) we have

n + 1

j=n

But

ux(t) = u +ux(t -tn) for t J, +1 and
u (t) = U + ut (t, - t) for t .

Thus
((7,-) = (u)+ ±R

where
IIRII L2(o0,) LakIIUz.IIL2 (o,1) - 0 as n -- oc.

So
n+I

,)), = 2k(a(u),A,) + 1?
I = I

where R? --+ 0 as n - oo. Thus (i4) holds.

D

Thus, if {u n } or a subsequence tends to a limiting function, the latter must belong
to C'. To see that {un} converges, we proceed in two steps.

Proposition 3.3 Let {u"} be the sequence uniquely determined by (2.3). Then there
exists u" G C' and p > 0 depending on k the time step such that

IUn' - u11 < AIU - u-11 (3.3)

where I1 v1 =i I!vl,,(o.,).
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Proof: Let (u', v) denote the solution to (2.3) and let

O = " ", t" 0 (3.4)

for some u" e C' to be determined. From (2.3)

(Or" ', A) 4k -I- + , Az) = (' M (u",A- 'A7s) (07',A) +(;,s

so that
(0 1,A) + (-kD +-0 1', A) (0", A) -(0.,., A A) (3.5)

where we denote D : (:- ) - ((u7j) -Z(,;))/(u7j - u"). Note that It ,

satisfies the discrete Euler-Lagrange equation. Choosing \ = 0 in (3.5) yields

(Of
n + l

'Oi4) - (o,0+1) + - o- '1 2 = (kD,O7,Q) -+ (0",.0"+). (3.6)

Likewise
U

n +
1 - ,

n  V
r  

_i V
n

k ,x):( 2 ,x)
which with X = Vn+I - vn becomes

0 ~n+I _ 0 n 1,+ ° , on+ t - on?) = ((on'+ I)2 - (on) 2,( U n1
k 7) 2o, v.)

or

(O7±1,0 +1) -(on, On +() k k-11 1112
2i~~H +(,0')(,0)v 2V

which we substitute into (3.6) and get

k 11on,+111 2 + 11on+,1 2
2-0

k(D,0 +') + (0:,O (3.7)

-(on,o7±1) + (o,0on) + k!1n)112

(3.8)

Expanding k(u + l  ) about un in a Taylor series; using the previously established

bounds on u Z as well as noting Iu 1 < max{IsLI,IsuI}; and assuming a' is
Lipschitz gives the following inequality:

IDI . CU077 X ± o7s
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where C is a constant. Applying the Schwarz inequality, the elementary inequality
(2xy < (x2 + C-y , x,y,e > 0), and Poincar6's inequality, we can absorb terms
involving superscripts n + I on the right hand side of (3.8) into similar terms on the
left and we arrive at

kljO"+l 12 + 3l0"'+' 1 < ,(k) (k10j"112 + 3110" 112), Vnt E N

which is (3.3) and 1 < jt(k) < Ck- 1/2 independent of n.

Theorem 3.4 Let k < k' and (u",Vt) be the uniquely determined sequences from
(2.3). Then ]u e C,

Iir (IL", ")V (U', 0) (3.Q)

Procf: We adapt an argument in 1231. From (3.1.ii,), Iu" lH,(o,1) is bounded and we
may extract a subsequence {u" j } converging to some u" G S'I . Because of (3.2.1),

lur + I - u"II -* 0 as n --* oo. Then also un , +1 - u as j-* oo. Then (tO(uz"i+) -
-, uj) -U 0 as o o and (a(u),X,) = 0 following (3.2.11) so that

u* E C' and has to be one of the isolated points there. Let

B(u,) =- {XC S': Ix-u'll < c}

and pick 6 < dh/2 (cf. Example 1.1) so that u is the unique element in CrnB(u', 26).
Let {u",} be a subsequence of {u"} such that {u"j} C B(u,6/,u). Then

{u it 1 }+' C B (u", 6)

according to (3.3). We then distinguish between two mutually exclusive cases:

Case 1: 3{Unk}kEN C B(u',6)\B(u-,6/p). Then this new subsequence must
have a limit in B(u*,6)\B(u*,6/,) which contradicts that u* is the only element
in B(u*, 26) n CIh.
Case 2: ,(3{ul},kEN C B(u*,b)\B(u',6/,)). Then the entire sequence {un}
converges to u*.
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4. Numerical Results

In this section we compute the solutions obtained by the CTG method in order to

clarify our results, demonstrate the instability present in equilibrium values it where

a'(/t) <. 0, and show that the large time solutions are dependent on both the mesh

and the initial data.
To implement the CTG scheme we eliminated the velocities from (2.3) to obtain

the following three-step method: Find {u"},, c S' such that

f (a2 - [ A ((l,' ) + & (u'-I, u")) + Otu"lA,) dx 0 VA C S'

where

0 k2 41 - 2u'1 + u'

2k

(u, V) - (V), and 4b'(u) = u(u- SL)(U- SU,).
t -V

We factored the numerator in & to eliminate u - v from the denominator. We have

assumed uniform time steps. To solve this nonlinear system on each time step we
used the following fixed point iteration where we searched for z( ) -- u+l:

f Iz +) kzj'+),) dx+k

J0 2
f)A + u- 1 A,,} dx

0~ola 2 z ) (
S((u, z)) + &(a'- 1 ,u")) A, dx VA E S

On each iteration the linear tridiagonal system of equations was solved by Gaussian

elimination. Since our primary interest was in the behaviour of solutions of (2.3) we

continued the iteration until IIz(! +±) - z(j)IIL < 10-8 rather than carry out a more
efficient incomplete iteration procedure.

Figures 2, 3, and 4 show large time solutions (which we believe to be the final

states for these problems). In all these cases we took the final time as T = 40, the

number of time steps as N = 200, and initial data, specified completely at the nodes,

as
u°(xj) = u'(xj) = o10- ° sin(20x) for j 0,1,.. ,m.

We took m = 9, 10, 20 in Figures 2, 3, and 4, respectively. In all three cases we had

II z(u )lj,' , 5 X 10' °
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We conclude that each of the large time solutions is significantly different and none
are close to the zero solution which does solve the Euler-Lagrange equation, but, is

apparentl- dynamically unstable.
Figures 5, 6, and 7 show tile approximation of the large time solutions of the

problemn with )irichlet conditions at, both endpoints. In each of these cases we took
' - 80, .V 100, aid the initial data

=(x) 1010sin(20mx1 ) for = 0,1

We took in 9,10,20 in Figures 4, 5, 6, respectively. In addition, we found P
.2078265621 ± 5 x 10-10, .323969547 ± 5 x 10- '0 , 0.0 - 5 x 10- 10 in the three cases.

We tried a larger number of timesteps in some of the cases above and found no

change in the steady state patterns formed.

A possible explanation of the instability of the zero solution was observed in (81
by studyring a linearized problem around zero. We do the same, as follows: Find
IV = IVw(X. t) so

Wtt = C'(o)w.t + wx

with
w(0,t) W'(1,t)= 0, t > 0

an d
w(X,0) T Uo(x), w,(X,O) Vo(x) in (0,1).

The solution has the form
00

w(x, t) ,(Ane'+' + B,,eATt) sin((2e'-1)rx)
n=l

where
whre A± (-(2n - 1) 2

7r 2  
(2 i 4'(0)(2n - 1)27r2).

Thus eA+ t = -o-'(O),
e " =

e '0) - 0 as n - 0.

Thus the solution of the linearized system has a component which is growing expo-
nentially.

A similar procedure, although more complicated, can be carried out on the fully
discrete approximation problem to show the same results when k = ch where c is a
constant and h is sufficiently small.
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5. Concluding Remarks

We have shown that numerical solutions to the model problem (1.7) found by the
continuous time Galerkin scheme converge, as t - oo, to a numerical steady state,

as one would wish. If this time-dependent process is viewed as dynamic relaxation,
it is succesful at attaining steady states. We prove and observe though, as Silling

131 observed for a two dimensional anti-plane shear problem, that these are highly
dependent on the mesh and initial data. We can also interpret our results as an

analysis of the large time behaviour of the Kelvin-Voigt model for viscous damping

using a general, systematic approach.
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